Всё о науке за 60 минут - Марти Джопсон
Шрифт:
Интервал:
Закладка:
Слинки – шагающая игрушка
В 2014 году я получил возможность попытаться установить мировой рекорд и попасть в Книгу рекордов Гиннесса. Правда, за максимальное количество ступенек, на которые спустится слинки. С Хью Хантом, инженером из Кембриджского университета в Великобритании, мы установили рекорд в тридцать ступеней. В процессе экспериментов – стоит отметить, дело это оказалось сложнее, чем можно себе представить, – я делал перерывы, чтобы задаться вопросом, как вообще работает слинки.
Слинки изобрел Ричард Джеймс, инженер из Филадельфии (США), в 1943 году. Оригинальная конструкция, которая сохранилась и по сей день, представляет собой катушку из стальной проволоки длиной более 21 метра с 98 петлями-витками. Когда в 1945 году такая пружинка поступила в продажу, ее ждал настоящий успех. Говорят, что первую партию раскупили всего за 90 минут. С тех пор были проданы сотни миллионов слинки, и это не считая современных пластиковых версий.
В полной мере магия слинки откроется перед вами, когда вы поставите ее и перекинете верхнюю часть пружинки над краем ступеньки. Вся пружина спустится на ступеньку вниз. Затем слинки самостоятельно сделает еще шаг и спустится на следующую ступеньку. Это будет происходить до тех пор, пока игрушка не доберется до площадки или, что бывает гораздо чаще, не запутается и не остановится. Казалось бы, такая конструкция не должна работать, но она определенно работает.
Каждая пружина, независимо от размера, обладает коэффициентом жесткости, который представляет собой совокупную характеристику ее длины и силы. Чрезвычайно важно, чтобы жесткость пружины была одинаковой по всей длине слинки, а также соответствовала высоте ступеней, по которым вы пытаетесь ее спускать. Если жесткость слишком высока, слинки будет все быстрее переворачиваться вниз по ступенькам и начнет хаотично падать, а не шагать. Если же чересчур низкой – ее верхняя часть достигнет следующей ступени и пружина просто застрянет, не имея достаточно тяги, чтобы опустить нижнюю часть слинки. То же самое и с высотой ступеней: если она окажется неподходящей, пружинка просто не будет шагать. Например, на очень неглубоких ступенях большинство слинки застревает, так как им недостает мощности, чтобы вытянуть всю катушку вниз, к следующей ступени. А на слишком узких – для шага не хватает места.
Но коэффициент жесткости объясняет только, почему слинки спускается на следующую ступеньку, но никак не то, почему она продолжает шагать. Чтобы добраться до сути этого явления, нам нужно очень внимательно понаблюдать за слинки, и лучше в замедленной съемке. Вы заметите нечто весьма интересное: когда пружинка касается нижней ступени, последние несколько витков не торопятся соединиться с остальными и даже на мгновение замирают на верхней ступени. Именно импульс последних витков способен преодолевать силу, стягивающую пружину при растяжении. Запас этого импульса позволяет слинки поднимать верхнюю часть и начинать падать вниз, на следующую ступеньку. Далее гравитация делает свое дело, и весь процесс начинается снова.
Итак, с помощью физики, работающей так, как нужно вам, вы можете заставить слинки пройти определенный путь. Тем не менее, по моему собственному рекордному опыту, секрет действительно длинного спуска заключается в том, чтобы сделать достаточно сильный первый щелчок, и тогда слинки не остановится. Сделайте его правильно, и ваша пружинка будет шагать вниз, пока не закончатся ступени.
Машины, которые видят в темноте
В углу комнаты, где я сижу и пишу эти строки, под потолком висит маленькая коробочка. Это моя система охранной сигнализации. Внешне кажется, что она сформирована из непрозрачного изогнутого листа белого пластика. Коробочка не замечает моего присутствия, но, когда я встаю со своего места, на ней загорается красная лампочка. Каким-то образом белая пластиковая коробка видит меня, хотя я нахожусь по крайней мере в пяти метрах от нее. Если я стою абсолютно неподвижно, примерно через пять секунд лампочка гаснет. Можно двигаться достаточно медленно, чтобы красный огонек оставался выключенным, но это невероятно трудно. Детектор удивительно чувствительный – малейшее быстрое движение, и он замечает меня. Более того, он обнаруживает движение как при дневном свете, так и в кромешной темноте. Как же так получается, что нечто столь маленькое и безобидное может узнать меня в другом углу комнаты?
Пластиковая коробка с мигающим красным огоньком известна на рынке систем охранной сигнализации как пассивный инфракрасный детектор, или ПИР-детектор. Как следует из названия, он способен обнаруживать инфракрасное излучение, которое по сути является таким же излучением, как свет, но мы его видеть не можем. Наши глаза воспринимают только определенный диапазон длин волн света, составляющего радугу. Однако существует непрерывный спектр электромагнитного излучения с длинами волн, которые выходят далеко за пределы диапазона радуги в обоих направлениях. Излучение с длиной волны чуть больше, чем у красного света, – это инфракрасное излучение. Хотя мы его не видим, в некоторых случаях можем почувствовать его как излучаемое тепло.
Все тела испускают инфракрасное излучение в виде слабо ощущаемого тепла. В ПИР-детектор встроен тонкий кристалл чувствительного вещества, называемого нитридом галлия. Кристаллы этого вещества обладают необычным свойством: при попадании на них инфракрасного излучения происходит изменение их структуры. Кроме того, несколько меняются и их электрические свойства, что приводит к незначительной разнице в количестве электричества, которое может протекать через кристалл. Хотя это очень незначительный эффект, вам не составит труда его обнаружить с помощью простых и легкодоступных электрических цепей.
Чтобы увидеть, как что-то или кто-то движется по комнате, понадобиться не один, а два крошечных стержневидных кристалла из нитрида галлия. В детекторе их располагают вертикально рядом друг с другом и с небольшим промежутком между ними. Каждый кристалл эффективно регистрирует тепло только в проецируемой им тонкой вертикальной полоске. Поскольку эти полосы расположены очень близко, стационарное фоновое инфракрасное излучение, попадающее на каждый из них, и разность потенциалов (напряжение), создаваемая каждым кристаллом, почти одинаковы.
Самая большая хитрость состоит в установке кристаллов: положительный выход одного из них необходимо соединить с положительным выходом другого. Если разность потенциалов, создаваемая каждым кристаллом, одинаковая, они сами себя компенсируют, и на выходе мы не получаем никакого напряжения. Этот трюк делает детектор нечувствительным к таким вещам, как радиаторы центрального отопления, вентиляционные отверстия и другие источники медленно меняющегося фонового инфракрасного излучения.
Если вы пересекаете комнату, то непременно проходите и через две тонкие полоски – области «зрения» кристаллов. В какой-то момент вы на мгновение