Большая Советская Энциклопедия (РА) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Лит.: Математика в СССР за 40 лет. 1917—1957, т. 2, М., 1959 (имеется лит.).
Размах
Разма'х — разность между наибольшим и наименьшим значениями результатов наблюдений. Пусть X1, ..., Xn — взаимно независимые случайные величины с функцией распределения F (x) и плотностью вероятности f (x). В этом случае размах Wn определяется как разность между наибольшим и наименьшим значениями среди X1, ..., Xn; размах Wn представляет собой случайную величину, которой соответствует функция распределения:
(w ³ 0; если w < 0, то P {W £ w} = 0).
В математической статистике Р., надлежащим образом нормированный, применяется как оценка неизвестного квадратичного отклонения. Например, если Xk имеют нормальное распределение с параметрами (а, s), то при n = 5 и 10, соответственно, величины 0,4299W5 и 0,3249W10 будут несмещенными оценками s. Такие оценки часто используют при статистическом контроле качества, поскольку определение Р. нескольких результатов измерений не требует сложных вычислений.
Лит. : Хальд А. , Математическая статистика с техническими приложениями, пер. с англ., М., 1956.
Размер
Разме'р музыкальный, метрический размер, тактовый размер, выражение музыкального метра в определённых ритмических единицах.
Размер единицы
Разме'р едини'цы физической величины, количественное содержание величины в единице. Размеры основных единиц какой-либо системы единиц устанавливаются при их выборе и определяют размеры всех производных единиц данной системы. Так, размер единиц площади и объёма зависит от выбора единицы длины. Для образования ряда единиц различного размера (кратных единиц и дольных единиц) данной величины используются десятичные приставки (см. Международная система единиц). Размеры десятичных кратных и дольных единиц соотносятся как степени десяти, соответствующие приставкам, входящим в наименования единиц. Так, размер миллиметра в 1000 раз меньше размера метра.
Размер стихотворный
Разме'р стихотво'рный, форма стихотворного ритма, последовательно выдержанная на протяжении стихотворного произведения или его отрывка. В силлабическом стихосложении Р. с. определяется числом слогов (8-сложный стих, 11-сложный стих); в тоническом стихосложении — числом ударений (3-ударный стих, 4-ударный стих); в метрическом стихосложении и силлабо-тоническом стихосложении — числом стоп (3-стопный ямб, 4-стопный дактиль). Обычно различаются понятия метр (определяющий ритмическое строение стиха, например ямб), Р. с. (определяющий длину стиха, например 4-стопный ямб) и разновидность Р. с. (определяющая дополнительную специфику ритма, например 4-стопный ямб со сплошными мужскими окончаниями или чередование 4-стопного и 3-стопного ямба). Однако эта терминология ещё не вполне установилась (в частности, термины «метр» и «Р. с.» иногда употребляются как синонимы).
Различные Р. с. по-разному соотносятся с членением речи на синтагмы и колоны и, следовательно, с её интонационным строением. Ближе всего совпадают со средним объёмом колона, допускают наиболее естественные и разнообразные интонации и поэтому наиболее употребительны в русской поэзии Р. с. с длиной строки в 8—9 слогов (4-стопные хорей и ямб, 3-стопные дактиль, анапест и амфибрахий); более короткие Р. с. звучат отрывисто, более длинные — торжественно и плавно. Эти естественные особенности во взаимодействии с историко-литературными традициями определяют тяготение отдельных Р. с. к тем или иным жанрам и темам. Так, 6-стопный ямб с парной рифмовкой (александрийский стих) в русской поэзии 18 в. употреблялся преимущественно в «высоких» жанрах классицизма (поэма, трагедия, дидактическое послание и др.), в 19 в. — в стихах на античные темы («антологическая лирика» А. А. Фета, А. Н. Майкова и др.) и в меньшей степени на гражданские темы («Элегия» Н. А. Некрасова), а в 20 в. теряет эти области применения и остаётся почти неупотребителен. Так, 4-стопный ямб со сплошными мужскими рифмами употреблялся почти исключительно в стихах, связанных (хотя бы пародически) с романтической традицией («Шильонский узник» В. А. Жуковского, «Мцыри» М. Ю. Лермонтова, «На Волге» и «Суд» Некрасова, «Мурманские дневники» К. М. Симонова).
В зависимости от популярности различных жанров и освоения различной тематики употребительность разных Р. с. в истории русской поэзии менялась. В силлабической поэзии 17—18 вв. господствовали размеры 11- и 13-сложный. В силлабо-тонической поэзии 18 в. безраздельно господствовали 6-стопный ямб, 4-стопный ямб, вольный ямб и 4-стопный хорей. В 1-й половине 19 в. постепенно входят в употребление 5-стопный ямб и трёхсложные размеры (дактиль, амфибрахий, анапест, сначала чаще 4-стопные, потом 3-стопные). Во 2-й половине 19 в. складываются относительно устойчивые пропорции употребления Р. с. в русской лирике: около четверти всех стихотворений пишется 4-стопным ямбом, четверть — остальными ямбическими Р. с., четверть — хореями, четверть — 3-сложнымн размерами. В 20 в. в употребление входят несиллабо-тонические размеры — дольник (3- и 4-иктный), акцентный стих (3- и 4-ударный) и др.; в остальном пропорции групп Р. с. остаются теми же, хотя отдельные Р. с. к настоящему времени почти сходят со сцены (вольный ямб, 6-стопный ямб), а иные, наоборот, усиленно развиваются (5-стопный хорей).
Лит. см. при ст. Стихосложение.
М. Л. Гаспаров.
Размерностей анализ
Разме'рностей ана'лиз, метод установления связи между физическими величинами, существенными для изучаемого явления, основанный на рассмотрении размерностей этих величин.
В основе Р. а. лежит требование, согласно которому уравнение, выражающее искомую связь, должно оставаться справедливым при любом изменении единиц входящих в него величин. Это требование совпадает с требованием равенства размерностей в левой и правой частях уравнения. Формула размерности физической величины имеет вид:
[N] = Ll M mT t..., (1)
где [N] — символ размерности вторичной величины (обычно берётся в прямые скобки); L, М, Т, ... — символы величин, принятых за основные (соответственно длины, массы, времени и т.д.); I, m, t, ... — целые или дробные, положительные или отрицательные вещественные числа. Показатели степени в формуле (1), т. е. числа l, m, t, называются показателями размерности или размерностью производной величины [N]. Так, формула размерности для ускорения (символ а) записывается в виде [а] = LT—2, для силы — [F] = LMT—2. Понятие размерности распространяется и на основные величины. Принимают, что размерность основной величины в отношении самой себя равна единице и что от др. величин она не зависит; тогда формула размерности основной величины совпадает с её символом. Если единица производной величины не изменяется при изменении какой-либо из основных единиц, то такая величина обладает нулевой размерностью по отношению к соответствующей основной. Так, ускорение обладает нулевой размерностью по отношению к массе. Величины, в размерность которых все основные величины входят в степени, равной нулю, называются безразмерными. Выбор числа физических величин, принимаемых за основные, и самих этих величин в принципе произволен, но практические соображения приводят к некоторому ограничению свободы в выборе основных величии и их единиц.
В СГС системе единиц за основные величины принимают длину, массу и время. В этой системе размерность выражается произведением трёх символов L, М и Т, возведённых в соответствующие степени. Международная система единиц содержит семь основных величин.
Если для исследуемого явления установлено, с какими величинами может быть связана искомая величина, но вид этой связи неизвестен, то можно составить уравнение размерностей, в котором в левой части будет стоять символ искомой величины со своим показателем размерности, а в правой — произведение символов величин, от которых искомая величина зависит, но с неизвестными показателями размерности. Задача нахождения связи между физическими величинами сводится в этом случае к отысканию значений соответствующих показателей размерности. Если, например, требуется определить время t прохождения пути s телом массой М, движущимся поступательно и прямолинейно под действием постоянной силы f, то можно составить уравнение размерности, имеющее вид: