Учебник по ТРИЗ - А Гасанов
Шрифт:
Интервал:
Закладка:
При решении задач по АРИЗ на этапе синтеза технического решения возникает необходимость в исходной модели задачи провести некоторые преобразования: ввести новые вещества и поля, либо изменить поля и вещества уже существующие в системе. Такие трансформации могут носить как физический характер (например, изменение агрегатного или фазового состояния веществ), так и быть изменениями характеристик пространственной структуры оперативной зоны объекта, в котором реализуется конфликт между его частями. Необходимые же преобразования в оперативной зоне по АРИЗ требуется совершить по отношению к некоторому икс-элементу, характер которого до поры, до времени неизвестен, а возможная его структура как раз и должна быть выявлена в процессе анализа задачи по шагам.
Анализ большого патентного материала, который, как и во всех других случаях, является основным исследовательским материалом в ТРИЗ, позволил разработать классификацию ВПР, существенно упрощающую работу с этим инструментом при решении изобретательских задач. Можно выделить следующие основные характеристики ресурсов: вид, количество, ценность, степень готовности к применению, источник.
По видам ресурсы можно разделить на энергетические, вещественные, пространственные, временные, функциональные, информационные, комбинированные.
К энергетическим ресурсам относятся все известные нам виды энергии и полей (электрические, электромагнитные, тепловые поля и т. д.), которые не подводятся к системе и не вырабатываются специально, а уже имеются в совершенствуемой системе или во внешней среде.
Приведем примеры:
Многие садоводы-любители для борьбы с вредителями пользуются опрыскивателем. Чаще всего в качестве энергетической установки при этом выступает сам человек, нагнетая давление в баллон с жидкостью. Точно так же поступает и автомобилист, накачивая шину колеса, хотя наверняка можно для этой цели приспособить и двигатель автомобиля.
Кстати, автомобиль, как источник разных, часто пока неиспользованных, видов энергии может быть объектом для поиска ВПР. Например, известно, что выхлопные газы выносят в атмосферу не только пары воды, диоксид углерода (углекислый газ) и некоторые вредные составляющие, но и неиспользованную тепловую и механическую энергию. Эту энергию можно заставить работать. Достаточно по специальным каналам направить выхлопные газы к турбинке и раскрутитъ ее до нескольких тысяч оборотов в минуту. Та, в свою очередь, приведет в действие небольшой воздушный компрессор, создающий дополнительное давление в воздухозаборнике, что и повысит мощность двигателя. Именно так и поступают при создании современных автомобилей с турбонаддувом.
Но выхлопные газы могут не только усиливать наддув двигателя, они способны подсушивать перевозимые грузы, перемешивать их. Могут они натянуть над автомобилем защитный тент, защитив и сам автомобиль и водителя от атмосферных осадков.
Под вещественными ресурсами будем понимать все материальные тела, которые есть в системе, надсистеме или внешней среде. Вот несколько примеров.
Для восстановления размеров деталей, например, изношенных венцов больших зубчатых колес экскаваторов, их помещают в специальную форму и с огромной силой сжимают нерабочие части венцов. Металл из этих частей выдавливается в зубцы, увеличивая их размеры. Затем лишний металл с контактных поверхностей зубчатых колес сошлифовывают. Практически также предложил поступать изобретатель Л. К. Нагорный при изготовлении составных прокатных валков: цилиндрическую гильзу надевают на ось с зазором, а затем ось сжимают с торцов, чтобы заполнить зазор. Вещественным ресурсом здесь является материал оси; изготовление валков значительно упрощается, поскольку не нужна точная обработка посадочных поверхностей (а.с. 833347).
Существенным для поиска вещественных ресурсов в системе является то, что вещества представляют собой многоуровневую иерархическую структуру, простирающуюся от элементарных частиц, через атомы, молекулы, их ассоциации, кристаллическую решетку к простейшим техновеществам (проволока, лист, шарик и т. д.), к объединению в ассоциации обработанных техновеществ, составляющих технические системы высокого уровня организации. Отсюда же ясно, что новое вещество в системе может быть получено как разрушением более крупной системы, например, разложением воды на молекулы водорода и кислорода, так и объединением уже существующих частиц более низкого уровня. При этом выгоднее разрушать «целые» частицы (молекулы, атомы), поскольку нецелые частицы (например, ионы) уже частично разрушены и сопротивляются дальнейшему разрушению. Достраивать же, наоборот, выгоднее нецелые частицы, стремящиеся к восстановлению
Под пространственными ресурсами будем понимать свободное пространство, «пустоту», которую можно использовать для изменения исходной системы или для повышения эффективности ее эксплуатации.
Во многих регионах мира, расположенных на берегах морей и океанов, возникают большие проблемы с питьевой водой. Воды рядом много, но использовать ее нельзя — она соленая! Необходимо не только создавать мощные опреснительные установки, но и строить большие хранилища для пресной воды. Швед К. Дункер предложил для хранения дождевой и питьевой воды использовать гигантские плавающие резервуары, представляющие собой не имеющие дна пластиковые контейнеры, нижний край которых с помощью грузил удерживается в вертикальном положении. Пресная вода (имеющая меньшую плотность) держится поверх соленой, не смешиваясь с ней. Чтобы избежать испарения пресной воды, предусматривается пластиковое же покрытие. Создание хранилищ такого объема на берегу было бы значительно сложнее и менее экономично.
Интересный пространственный ресурс нашли английские авиаторы. На взлетно-посадочной полосе, конструкцию которой запатентовали английские инженеры, готовят для взлета сразу несколько самолетов. Казалось бы, что это опасно. Однако разбегаться они будут по слегка искривленным (веерообразным) дорожкам длиной 600–900 м, а затем выходить на прямые участки и взлетать.
Ярким примером использования пространственного ресурса являются приемы перехода в другое измерение. В ряде стран уже широко практикуется не горизонтальное огородничество, а вертикальное, когда делянки с разными культурами в зависимости от степени развития растения размещают в вертикальной плоскости. При этом значительно облегчается уход за ними. Довольно близка к этому и идея использования крыш домов для устройства теплиц: и солнца, и воздуха — в достатке.
Мы часто говорим, что живем в пространстве и времени. Логично предположить, что помимо пространственных ресурсов, должны существовать и временные ресурсы. Что же можно к ним отнести? Это, во-первых, время до начала некоторого главного производственного процесса, и, во-вторых, промежутки между отдельными этапами производственного процесса. И те, и другие временные отрезки могут быть использованы для улучшения основного функционирования системы.
Пример на использование временного ресурса: если совместить процесс прокатки рельсов с их закалкой, то можно резко сократить расходы теплоты на повторный нагрев металла, необходимый для закалки.
Еще пример из другой отрасли.
Создан универсальный автомобильный разгрузчик. Он может многое: загружать семенами разные посевные агрегаты, смешивать удобрения, обслуживать картофелесажалки и, что особенно важно для сельского хозяйства, не имеет сезонных простоев. Летом разгрузчик используют на технологических операциях, а зимой — для вывоза сыпучих грузов.
Последний пример характеризует рациональный подход к проектированию техники, позволяющий ликвидировать ее простои за счет увеличения выполняемых ею функций.
Функциональные ресурсы. Это, по-видимому, возможность использовать известную функцию объекта по иному назначению, либо выявление новой функции в системе. Сюда же можно отнести и возможность системы выполнять по совместительству дополнительные функции после некоторых изменений. Приведем примеры таких ресурсов.
Для борьбы со сливной стружкой используют самые разнообразные способы — от стружколомающих канавок на резцах до механизмов мелкого трясения деталей станка. А вот изобретатели из Нижегородского технического университета предложили дробить стружку струей уже работающей в станке охлаждающей жидкости, создавая в ней импульсы давления с частотой в несколько десятков герц и давлением 5–15 МПа (а.с. 986600).
Но, как выясняется, этим не ограничиваются «изобретательские» возможности охлаждающей жидкости. Оказалось, что с легкой руки изобретателя Э. К. Асташенко она может сигнализировать и о поломке режущего инструмента (а. с. 776760). Струя, если инструмент сломался, стекает в небольшой резервуар на коромысле и, переполняя его, как чашу весов, другим концом коромысла выключает станок.