Загадки для знатоков: История открытия и исследования пульсаров. - Павел Амнуэль
Шрифт:
Интервал:
Закладка:
Здесь тоже, заметьте, был вопрос доверия. Бессель, как и все астрономы, безгранично верил в справедливость законов Ньютона. Поэтому наличие невидимой звезды в системе Сириуса представлялось несомненным. А нейтронные звезды, хотя и не противоречили известным законам физики, были лишь нововведением, не освященным вековыми традициями. Еще не были известны многие свойства недавно открытого нейтрона, а тут уже заговорили о нейтронных звездах!
В 1863 году американский астроном А. Кларк, испытывая новый объектив для телескопа, заметил около Сириуса слабую звездочку. Провели наблюдения, и выяснилось, что звездочка и Сириус обращаются около общего для них центра масс 1 раз за 50 лет. Но загадка Сириуса В в то время еще не возникла. Лишь в 1914 году У. Адамсу удалось получить спектр Сириуса В, и тогда обнаружилось, что температура на поверхности этой слабенькой звездочки вдвое выше, чем температура поверхности Солнца. Что же получается? Количество энергии, излучаемой нагретым шаром (звездой), пропорционально четвертой степени температуры и квадрату радиуса звезды. Если бы Сириус В по размерам был подобен Солнцу, то должен был излучать в 24 = 16 раз больше, чем наше дневное светило. А он излучает значительно меньше Солнца. Значит, Сириус В должен иметь соответственно значительно меньшие размеры. Радиус его должен составлять около 10 000 километров — чуть больше, чем радиус Земли!
Это был наблюдательный факт, и все равно астрономы поверили в него не сразу. Эддингтон писал в книге «Звезды и атомы», опубликованной в 1927 году:
«Сообщение спутника Сириуса после его расшифровки гласило: «Я состою из вещества, плотность которого в 3000 раз выше, чем все, с чем вам когда-нибудь приходилось иметь дело; тонна моего вещества — это маленький кусочек, который умещается в спичечной коробке». Что можно сказать в ответ на такое послание? В 1914 году большинство из нас ответило так: «Полно! Не болтай глупостей!»
Но с наблюдениями не поспоришь. С существованием в природе белых карликов пришлось смириться. Сначала их приняли как факт, и лишь полтора десятилетия спустя поняли, почему белые карлики имеют такие маленькие размеры и такую большую плотность. Первым об этом написал английский астрофизик А. Милн в 1930 году. В белых карликах, утверждал он, находится вырожденное вещество.
Что это значит?
Любая звезда находится в равновесии, потому что в ней противоборствуют две равно могучие силы. Все частицы вещества притягиваются друг к другу — действуют силы тяжести. Тяжесть стремится сжать звезду. Но звезда горяча. Частицы в ней хаотически движутся, создавая газовое давление. Давление газа стремится звезду расширить. Температура на поверхности Солнца достигает 6 тысяч градусов, а в недрах — до 20 миллионов градусов! Обычное газовое давление тем больше, чем выше температура. В нормальных звездах, подобных Солнцу, давление газа способно уравновесить силу тяжести в любой точке звезды. Будь звезда чуть-чуть горячее, она стала бы расширяться (газовое давление оказалось бы больше, чем сила тяжести), но при расширении она стала бы остывать, как и положено газу. Давление упало бы, и расширение прекратилось. В стационарных звездах обе силы находятся в строгом равновесии друг с другом.
Но если сила тяжести существует в звезде всегда, то этого нельзя сказать о газовом давлении. Ведь для того чтобы газ был нагрет, нужна какая-то причина, какая-то, грубо говоря, «печка». Что же поддерживает температуру звезды? Это был главный вопрос астрофизики: почему звезды светят? Гипотез по этому поводу выдвигалось много. Лишь в тридцатые годы проблема стала проясняться — были открыты ядерные превращения. Между прочим, тогда выяснилось, что о возможности черпать энергию нагрева звезды из ядерных реакций (например, из слияния водорода в гелий) писал еще в 1919 году Р. Аткинсон. Но, естественно, эта работа никакого впечатления не произвела.
Однако какими бы ни были источники нагрева звезды, они должны себя в конце концов исчерпать. Что случится со звездой после этого? Звезда остынет, как печка без дров, и газовое давление уменьшится. Но тогда сила тяжести начнет сжимать звезду. До каких пор?
Одно из двух. Либо отыщется другой вид давления, отличный от обычного газового, и сжатие будет остановлено, либо… Либо такого давления не найдется, и звезда будет сжиматься бесконечно! До появления квантовой механики астрономы не знали иного давления, кроме давления нагретого газа. Квантовая механика позволила сделать шаг вперед. Оказалось, что даже абсолютно холодный газ (нуль градусов по шкале Кельвина) обладает вполне определенным остаточным давлением, причем настолько большим, что оно способно остановить сжатие звезды. Дело в том, что в квантовой механике существуют два сорта элементарных частиц, различных по своим характеристикам. Поскольку в микромире все свойства меняются не непрерывно, а порциями, квантами, то и вращение элементарных частиц тоже описывается не угловой скоростью, а дискретным квантовым числом — спином. Спин частицы может быть целым (0, 1, 2 и т. д.) или полуцелым (1/2, 3/2 и т. д.). Поведение частицы зависит от того, целый у нее спин или полуцелый. Еще в начале двадцатых годов, когда квантовая механика только начиналась как научная дисциплина, индийский физик Бозе (а затем Эйнштейн) описал поведение частиц, обладающих целым спином. Теперь такие частицы называют бозонами. А поведение частиц с полуцелым спином описывается квантовой статистикой, созданной Ферми и Дираком и названной их именами. Сами же частицы называют фермионами. Бозонами являются фотоны и нейтрино (тогда еще не открытое). А протон, электрон, нейтрон (тогда еще тоже не обнаруженный) являются фермионами.
В квантовой механике существует принцип Паули, который гласит: в одном и том же квантовом состоянии не могут находиться сразу две (и больше) частицы с полуцелым спином. Фермионы не могут обладать одинаковыми энергиями или импульсами!
А теперь заглянем внутрь звезды. Источники нагрева исчерпаны, звезда остывает. Представим, что она совсем остыла — температура ее стала равной абсолютному нулю. Естественно, что вся тепловая энергия частиц (энергия их хаотического движения) тоже исчезла. Нет хаотического движения, нет и давления. Ничто не противостоит тяжести, стремящейся сжать звезду. Ничто ли? Звезда ведь состоит из атомных ядер, протонов, электронов, нейтронов (не забудем, что нейтроны тогда еще не были открыты), в общем — из фермионов. И значит, в остывшей звезде действует квантовая статистика Ферми — Дирака, действует принцип Паули. Две частицы не могут обладать одинаковыми импульсами! Когда мы говорим, что в абсолютно холодной звезде прекращается всякое движение, это справедливо только для одной-единственной частицы. Одна частица действительно обладает нулевым импульсом. Но именно поэтому любая другая частица должна иметь импульс, отличный от нуля (действует принцип Паули!). Третья частица должна иметь еще больший импульс и так далее.
В звезде колоссальное число частиц (в Солнце их около 1057). И как бы мало ни отличались импульсы частиц друг от друга, все же импульс самой энергичной из них окажется огромным. Но если есть импульс, то есть и давление. Если импульс частиц может оказаться большим, то велико может быть и давление. Импульс самой быстрой частицы в такой системе называется граничным Ферми-импульсом, а описанный нами газ называется вырожденным Ферми-газом. Если такой газ нагревать, то вырождение исчезнет — частицы приобретают хаотическое тепловое движение, освобождают уровни, на которых находились раньше, все больше и больше увеличивая свои импульсы…
Итак, остывая, звезда сжимается. Частицы все сильнее прижимаются друг к другу. Частиц очень много, граничный импульс Ферми очень велик. Наступает вырождение — давление вырожденного газа становится больше, чем обычное тепловое давление. А если сжатие продолжается, то давление вырожденного газа способно даже уравновесить силу тяжести!
Теория вырожденных звезд была строго развита в 1931 году индийским астрофизиком С. Чандрасекаром. В статье «Сильно сжатая конфигурация звездной массы» он описал звезду из вырожденного газа протонов и электронов. Оказалось, что открытые почти сто лет назад белые карлики прекрасно описываются законами квантовой механики, законами статистики Ферми — Дирака. В белых карликах давление вырожденного газа как раз таково, что уравновешивает силу тяжести. Плотность вещества в белых карликах (1 т/см3) достаточна для создания нужного давления. Наконец, размеры звезд (10 000 км) достаточны для создания нужной плотности. Все прекрасно сходилось! Конечно же, температура белых карликов, наблюдаемых в телескопы, не равна абсолютному нулю. Спутник Сириуса нагрет до 10 тысяч градусов. Но что значит тепловая энергия, соответствующая этой температуре, по сравнению с энергией вырождения? Капля в море… Поэтому белые карлики хорошо описываются уравнениями, выведенными для абсолютно холодного вещества.