Категории
Самые читаемые книги
ЧитаемОнлайн » Компьютеры и Интернет » Интернет » Операционная система UNIX - Робачевский Андрей Михайлович

Операционная система UNIX - Робачевский Андрей Михайлович

Читать онлайн Операционная система UNIX - Робачевский Андрей Михайлович

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 98 99 100 101 102 103 104 105 106 ... 156
Перейти на страницу:

Перед фактическим использованием буфера, например при чтении или записи буфера процессом, или при операции дискового ввода/вывода, доступ к нему для других процессов должен быть заблокирован. При обращении к уже заблокированному буферу процесс переходит в состояние сна, пока данный ресурс не станет доступным.

Не заблокированные буферы помечаются как свободные и помещаются в специальный список. Буферы в этом списке располагаются в порядке наименее частого использования (Least Recently Used, LRU). Таким образом, когда ядру необходим буфер, оно выбирает тот, к которому не было обращений в течение наиболее продолжительного промежутка времени. После того как работа с буфером завершена, он помещается в конец списка и является наименее вероятным кандидатом на освобождение и повторное использование. Поэтому, если процесс вскоре опять обратится к тому же блоку данных, операция ввода/вывода по-прежнему будет происходить с буфером кэша. С течением времени буфер перемещается в направлении начала очереди, но при каждом последующем обращении к нему, будет помещен в ее конец.

Основной проблемой, связанной с буферным кэшем, является "старение" информации, хранящейся в дисковых блоках, образы которых находятся в буферном кэше. Как следует из схемы работы кэша, большинство изменений затрагивают только данные в соответствующих буферах, в то время, как дисковые блоки хранят уже устаревшую информацию. Разумеется в нормально работающей системе проблемы как таковой не возникает, поскольку в операциях ввода/вывода всегда используются свежие данные буферного кэша. Однако при аварийном останове системы, это может привести к потере изменений данных файлов, сделанных процессами непосредственно перед остановом.

Для уменьшения вероятности таких потерь в UNIX имеется несколько возможностей:

□ Во-первых, может использоваться системный вызов sync(2), который обновляет все дисковые блоки, соответствующие "грязным" буферам. Необходимо отметить, что sync(2) не ожидает завершения операции ввода/вывода, таким образом после возврата из функции не гарантируется, что все "грязные" буферы сохранены на диске.[50]

□ Во-вторых, процесс может открыть файл в синхронном режиме (указав флаг O_SYNC в системном вызове open(2)). При этом все изменения в файле будут немедленно сохраняться на диске.

□ Наконец, через регулярные промежутки времени в системе пробуждается специальный системный процесс — диспетчер буферного кэша (в различных версиях UNIX его названия отличаются, чаще всего используется fsflush или bdflush). Этот процесс освобождает "грязные" буферы, сохраняя их содержимое в соответствующих дисковых блоках[51] (рис. 4.14, д).

Кэширование в SVR4

Центральной концепцией в архитектуре виртуальной памяти SVR4 является отображение файлов. При этом подходе все адресное пространство может быть представлено набором отображений различных файлов в память. Действительно, в страницы памяти, содержащие кодовые сегменты, отображаются соответствующие секции исполняемых файлов. Процесс может задать отображение с помощью системного вызова mmap(2), при этом страницам памяти будут соответствовать определенные участки отображаемого файла. Даже области памяти, содержимое которых изменяется и не связано ни с каким файлом файловой системы, т.н. анонимные страницы, можно отобразить на определенные участки специального файла устройства, отвечающего за область свопинга (именно там сохраняются анонимные объекты памяти). При этом фактический обмен данными между памятью и устройствами их хранения, инициируется возникновением страничной ошибки. Такая архитектура позволяет унифицировать операции ввода/вывода практически для всех случаев.

При этом подходе, когда процесс выполняет вызовы read(2) или write(2), ядро устанавливает отображение части файла, адресованного этими вызовами, в собственное адресное пространство. Затем эта область копируется в адресное пространство процесса. При копировании возникают страничные ошибки, приводящие в фактическому считыванию дисковых блоков файла в память. Поскольку все операции кэширования данных в этом случае обслуживаются подсистемой управления памятью, необходимость в буферном кэше, как отдельной подсистеме, отпадает.

Целостность файловой системы

Значительная часть файловой системы находится в оперативной памяти. А именно, в оперативной памяти расположены суперблок примонтированной системы, метаданные активных файлов (в виде системно-зависимых inode и соответствующих им vnode) даже отдельные блоки хранения данных файлов, временно находящиеся в буферном кэше.

Для операционной системы рассогласование между буферным кэшем и блоками хранения данных отдельных файлов, не приведет к катастрофическим последствиям даже в случае внезапного останова системы, хотя с точки зрения пользователя все может выглядеть иначе. Содержимое отдельных файлов не вносит существенных нарушений в целостность файловой системы.

Другое дело, когда подобные несоответствия затрагивают метаданные файла или другую управляющую информацию файловой системы, например, суперблок. Многие файловые операции затрагивают сразу несколько объектов файловой системы, и если на диске будут сохранены изменения только для части этих объектов, целостность файловой системы может быть существенно нарушена.

Рассмотрим пример создания жесткой связи для файла. Для этого файловой подсистеме необходимо выполнить следующие операции:

1. Создать новую запись в необходимом каталоге, указывающую на inode файла.

2. Увеличить счетчик связей в inode.

Предположим, что аварийный останов системы произошел между первой и второй операциями. В этом случае после запуска в файловой системе будут существовать два имени файла (две записи каталогов), адресующие inode со счетчиком связей di_nlinks, равным 1. Эта ситуация показана на рис. 4.15 (а). Если теперь будет удалено одно из имен, это приведет к удалению файла как такового, т.е. к освобождению блоков хранения данных и inode, поскольку счетчик связей di_nlinks станет равным 0. Оставшаяся запись каталога будет указывать на неразмещенный индексный дескриптор, или inode, адресующий уже другой файл (рис. 4.15, б).

Порядок операций с метаданными может иметь существенное влияние на целостность файловой системы. Рассмотрим, например, предыдущий пример. Допустим, порядок операций был изменен и, как и прежде, останов произошел между первой и второй операциями. После запуска системы файл будет иметь лишнюю жесткую связь, но существующая запись каталога останется правильной. Тем не менее при удалении имени файла фактически файл удален не будет, поскольку число связей останется равным 1 (рис. 4.15, в). Хотя это также является ошибкой, результатом которой является засорение дискового пространства, ее последствия все же менее катастрофичны, чем в первом случае.

Рис. 4.15. Нарушение целостности файловой системы

Ядро выбирает порядок совершения операций с метаданными таким образом, чтобы вред от ошибок в случае аварии был минимальным. Однако проблема нарушения этого порядка все же остается, т.к. драйвер может изменять очередность выполнения запросов для оптимизации ввода/вывода. Единственной возможностью сохранить выбранный порядок является синхронизация операций со стороны файловой подсистемы.

В нашем примере файловая подсистема будет ожидать, пока на диск не будет записано содержимое индексного дескриптора, и только после этого произведет изменения каталога.

Отсутствие синхронизации между образом файловой системы в памяти и ее данными на диске в случае аварийного останова может привести к появлению следующих ошибок:

1 ... 98 99 100 101 102 103 104 105 106 ... 156
Перейти на страницу:
На этой странице вы можете бесплатно скачать Операционная система UNIX - Робачевский Андрей Михайлович торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...