Мир электричества - Анатолий Томилин
Шрифт:
Интервал:
Закладка:
После окончания Второй мировой войны шведский астрофизик Ханнес Альфвен развил предположения, высказанные Биркеландом в начале века. Он представил, что туманность, окружавшая светило, состояла из нейтральных частиц, а вот Солнце обладало сильным магнитным полем. Под действием излучения Солнца и собственных столкновений атомы ионизировались. При этом ионы попадали в ловушки из магнитных силовых линий и увлекались вслед за вращающимся светилом. Постепенно Солнце теряло свой вращательный момент, передавая его газовому облаку. Но и в этом случае атомы более легких элементов должны были ионизироваться вблизи Солнца, а атомы тяжелых элементов – дальше. Следовательно, и ближайшие к Солнцу планеты должны состоять из наилегчайших элементов, то есть из водорода и гелия, а более отдаленные – содержать в себе железо и никель… Увы, астрономические наблюдения и космические исследования утверждают как раз обратное!
Аллегорический рисунок XVII века.
Муза астрономии Урания взвешивает мировые системы
Конечно, электромагнитные силы должны были играть роль в формировании планетной системы, но какова эта роль? Английский астроном Фред Хойл предложил новый вариант гипотезы. Сначала, как и полагалось, в недрах огромной туманности, обладавшей изначально магнитным полем, зародилась звезда – Солнце. Она быстро вращалась, и туманность становилась все более плоской, похожей на диск. Этот диск постепенно разгонялся, «забирая» движение у центрального светила и передавая его образовывающимся планетам. Солнце постепенно «притормаживалось».
Хойл считал, что момент количества движения от Солнца передавался не всем частицам туманности одинаково, а в основном газообразным, которые легче превращаются в ионы. Ученый так и писал: «Приобретая момент количества движения, планетное вещество удалялось от солнечного сгущения. Нелетучие вещества конденсировались и отставали от движущегося наружу газа. Именно с этим процессом связан тот факт, что планеты земной группы: 1) имеют малые массы; 2) почти полностью состоят из нелетучих веществ; 3) находятся во внутренней части системы».
Подобный механизм, по мнению Хойла, создавал условия для существования возле Солнца некой каменно-железной зоны, которая в широком промежутке между орбитами Марса и Юпитера переходила в область, где, напротив, преобладали вода и аммиак, а дальше. Дальше планеты должны были бы состоять из веществ еще более легких, чем составные части Юпитера и Сатурна. И вот тут-то получался «прокол», ибо плотность вещества Урана и Нептуна снова растет!
Нет, что и говорить, желание привлечь к образованию Солнечной системы электрические и магнитные силы вполне похвально, но доводы пока не очень убедительны. Пока следует признать, что даже частичное привлечение электрических и магнитных сил в качестве созидающих при образовании солнечного семейства надежд не оправдало. Ученым еще предстоит работать и работать.
Глава 3. От явления к эксперименту
Фрэнсис Гауксби, «F. R. S.», демонстрирует «эффлувиум»
На площади Пикадилли в Лондоне, перед Барлингтон-Хаузом, в наши дни всегда полно машин. Однако современные автомобили не портят вида этого старого здания с тремя разномастными этажами и балюстрадой на крыше. Более того, скопление транспортных средств даже как-то подчеркивает значимость строения. Не ищите на нем вывеску или табличку. Любой лондонец и так вам скажет, что здесь находится Королевское общество. Это его современное помещение.
Лондонское королевское общество для развития естественных наук было основано в 1660 году. Это одно из старейших научных учреждений мира, насчитывающее в своих списках немало славных имен. Избираются в общество, как правило, подданные Великобритании или Ирландии и не больше двадцати пяти человек в год. Кроме них могут быть добавлены три или четыре иностранных члена.
В начале XVIII века здание, в котором собирались «F. R. S.» (Fellows of Royal Society – члены Королевского общества), было другим. Заседания происходили в старом, уже тогда порядочно обветшавшем Грешем-колледже, завещанном науке богатым лондонским коммерсантом Томасом Грешемом еще при королеве Елизавете. Туда мы и пойдем…
Исаак Ньютон (1643–1727)
Потертые каменные ступени вводят нас в дом довольно мрачного вида. Угрюмым выглядит и зал заседаний – большая комната с высокими стрельчатыми окнами. Посередине – длинный стол, накрытый грубым сукном. Вокруг стола – стулья, у стен – простые деревянные скамьи, на которых размещались джентльмены в шляпах и плащах. Это и были «F. R. S.». В плащи они кутались, потому что в зале всегда было холодно, а шляпы в ту пору джентльмены снимали лишь в церкви и перед королем.
Стулья пока пусты. Они предназначены для важных титулованных гостей и для докладчика. За столом, спиной к пылающему камину, сидит председатель собрания – президент общества, рядом с ним – непременный секретарь.
Председательствующего нельзя не узнать, это сэр Исаак Ньютон! С 1703 года, после смерти коллеги, помощника и непримиримого врага одновременно, куратора-попечителя и организатора опытов Роберта Гука, Ньютон согласился возглавить общество. Несмотря на полное отсутствие способностей к руководству, его почти четверть века ежегодно переизбирали на этот почетный пост. Великому ученому вовсе не обязательно быть и великим организатором. Сэр Исаак Ньютон торжественно председательствовал на собраниях, восседая на мешке, набитом по традиции овечьей шерстью.
Надо признать, что со смертью Гука оборвалась и блестящая пора выдающихся совместных опытов в Лондонском королевском обществе. Кабинет с великолепной коллекцией приборов, инструментов пришел в упадок. Джон Бернал в книге «Наука в истории обще ства» описывает впечатления посетителя, побывавшего в Грешем-колледже в 1710 году. Коллекция инструментов «не только не была сколько-нибудь аккуратно прибрана, но, наоборот, покрыта пылью, грязью и копотью, и многие инструменты были сломаны и окончательно испорчены. Стоит только попросить тот или иной инструмент, как оператор, обслуживающий посетителей, обычно отвечает: «Его украл какой-то негодяй» – или, показывая его обломки, заявляет: «Он испорчен или сломан»; и так они заботятся об имуществе». Единственным прогрессом явился переезд общества в 1710 году по настоянию Ньютона в новый дом на Флит-стрит. Но это был успех, так сказать, в административно-хозяйственном плане.
Начало XVIII столетия вообще характеризуется как период затишья в английской науке. Предприимчивые купцы-дворяне, открывавшие в XVII столетии новые земли, уступили свое место более богатым, но менее любознательным спекулянтам новыми землями. А для спекуляций знания законов природы были необязательны. В упадке же экспериментального искусства среди членов Королевского общества сказалась и многолетняя личная неприязнь Ньютона к коллеге Роберту Гуку. Но тем интереснее отметить те немногочисленные эксперименты, которые все же ставились на его заседаниях.
Светящийся шар на электрической машине Гауксби
Вот отворяется дверь, ведущая во внутренние помещения Грешем-колледжа, и два оператора вносят какой-то станок, похожий на ножное точило. Такая же станина, большое колесо с ручкой, а наверху вместо точильного камня прилажен стеклянный шар, из которого выкачан воздух. Следом за установкой появляется и ее изобретатель Фрэнсис Гауксби – демонстратор, подготавливающий опыты для очередных заседаний. После смерти Гука он занял его место, вступив в должность одновременно с новым президентом.
Операторы задергивают шторы на окнах. В сумрачном помещении становится совсем темно. Затем один из операторов начинает вращать ручку машины, а Гауксби прижимает ладони к шару.
И о чудо! Натертый шар начинает светиться. Точь-в-точь как светились барометрические трубки с ртутью у француза Пикара при встряхивании.
Разве это не ответ на вопрос о природе свечения? Разве это не решающее доказательство того, что свет есть результат электризации, а не какого-то там «меркуриального фосфора» в духе алхимиков прошлых веков? Но опыт на этом не кончается. Остановив вращение, экспериментатор подносит к погасшему и темному шару руку. И тотчас же большая, едва ли не в дюйм (около двух с половиной сантиметров) величиной, голубая искра с треском выскакивает из наэлектризованного прибора и ощутимо клюет поднесенный палец.
Значит, электричество рождает не только силу притяжения, но и искры!… Интересно бы узнать, холодные они или горячие? Ученые джентльмены по очереди подносят пальцы к вновь и вновь электризуемому шару и вскрикивают, ощутив укол. Все это чудесно и непонятно. Правда, кто-то вспоминает, что несколько лет тому назад некий доктор Уолл, натерев янтарь, также извлек из него искру, предположив, что ее свет и треск представляют собой в некотором роде молнию и гром. Но природа атмосферных явлений была в то время совершенно неизвестна людям. Многие продолжали считать молнию вспышкой воспламеняющихся серных паров, накапливающихся в атмосфере. И блестящая догадка Уолла осталась незамеченной. Сам Гауксби, подобно своим предшественникам, полагал, что заряженные тела являются источниками некоего «эффлувиума» – истечения, переходящего с наэлектризованных тел на ненаэлектризованные. Оттого-то, дескать, последние и светятся вблизи наэлектризованных тел. Иногда вместо своей машины со стеклянным шаром Гауксби применял для электризации длинные стеклянные трубки.